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Independence Testing Problem

• Testing whether there is dependence between random
variables

• Data are often very high dimensional and highly nonlinear,
making testing difficult
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General Independence Testing

Suppose we have n samples of (xi, yi)
iid∼ FXY, i.e., xi ∈ Rp and

yi ∈ Rq. X and Y have distributions FX and FY and joint
distribution FXY. We are testing:

H0 : FXY = FXFY,
HA : FXY 6= FXFY.
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Desired Testing Properties

• Universally consistent for any distribution with finite
second moments

• Valid
• Strong empirical performance on a range of linear and
nonlinear relationships in finite sample
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Intuition



Pearson’s Correlation Can Only Detect Linear Relationships
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Distance Correlation (Dcorr) Picks Up Both Linear and Nonlinear
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Distance Correlation (Dcorr) [Szekely and Rizzo, 2014]

1. Compute pairwise distance matrices Dx, Dy

2. Center (biased) or doubly center (unbiased) Dx and Dy

3. Compute distance covariance statistic
4. Normalize to get distance correlation statistic Dcorrn(x, y)
5. Compute p-values via a permutation test or chi-square
approximation [Shen et al., 2022]
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Random Forest Proximity Kernel [Breiman, 2002]

• Random forest is an ensemble of decision trees
• Induces a proximity kernel which is how often that two
observations lie in the same leaf node across all trees.
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Random Forest Proximity Kernel [Breiman, 2002]

…
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Why Care About This Kernel?

• We can prove the random forest proximity kernel is
characteristic, which allows Dcorr to be universally
consistent for any distribution with finite second moments

• Dcorr may have lower power when sample size is low and
when data has strong nonlinear dependencies, excessive
noise, or high-dimensional [Ramdas et al., 2015]

• Literature has shown that better power can be achieved
with data-adaptive kernels [Gretton et al., 2012]
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Kernel Mean Embedding Random Forest (KMERF)

1. Compute the random forest proximity kernel for x, KΦ(x)

2. Transform similarities to distances for x
[Shen and Vogelstein, 2021]

Dx = 1− KΦ(x)

max(KΦ(x))

3. Compute pairwise distances for y using a distance metric,
Dy

4. Compute Dcorr test statistic and p-value
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Desired Testing Properties

• Universally consistent for any distribution with finite
second moments

• Valid
• Strong empirical performance on a range of linear and
nonlinear relationships in finite sample
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Simulations



20 Independence Testing Simulation Settings (1D)

Linear Exponential Cubic Joint Normal Step
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Fourth Root Sine 4 Sine 16 Square Two Parabolas

Circle Ellipse Diamond Noise Independence
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HD Independence Testing Power (KMERF Nearly Dominates)
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Real Data



Cancer Biomarker Discovery

1. 318 peptides were identified from 33 normal, 10 pancreatic
cancer, 28 colorectal cancer, and 24 ovarian cancer
samples [Wang et al., 2017].

2. Created a binary label vector, where 1 indicated the
presence of pancreatic cancer in the patients, and 0
indicated its absence

3. Applied the Benjamini-Hochberg procedure
[Benjamini and Hochberg, 1995] to control the false
discovery rate
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KMERF Identifies a Unique Biomarker for Pancreatic Cancer
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Conclusion

• KMERF is universally consistent for distributions with finite
second moments due to the kernel being characteristic

• Empirically demonstrated KMERF is valid
• Demonstrated strong empirical performance for KMERF on
a range of multivariate linear and nonlinear relationships
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Questions?
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Characteristic Kernel

Definition ([Fukumizu et al., 2007])
Let (X ,B), X is a random variable on X and (H, k) is a RKHS on
X . The mean element of X in H is a unique element mX ∈ H
such that 〈mX, f〉H = E[f(X)] for all f ∈ H. If the distribution of X
is FX, and P is the family of all probabilities on X ,B, we define
a mapMk by

Mk : P → H, FX 7→ mX.

The kernel k is characteristic if the mapMk is injective, or
equivalently, if EX∼FX1 [f(X)] = EX∼FX2 [f(X)] for all f ∈ H implies
that FX1 = FX2 and vice versa.



Two Sample Testing Problem

We are testing differences in distributions between groups (i.e.
control vs. cancer).

Let ui ∈ Rp be the realization of random variable U with
distribution FU for i = 1, . . . ,nu. Let vj ∈ Rp be the realization of
random variable V with distribution FV for i = 1, . . . ,nv. Then,

H0 : FU = FV,
HA : FU 6= FV.

This can be easily extended to k samples. This problem can be
reduced to the independence testing problem
[Panda et al., 2021].
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20 Two-Sample Simulation Settings (1D)
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HD Two-Sample Testing Power (KMERF Nearly Dominates)
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Simulation Settings

1. Compared KMERF at 500 trees to other multivariate
independence tests (MGC, Dcorr, Hsic, HHG, CCA, and RV)

2. n = 100 samples for x and y are sampled from each
simulation, p-values were computed, and repeat 1000
times

3. Empirical power was estimated at α = 0.05
4. Dimension for each simulation was varied and the process
was repeated and repeat



Empirical Feature Importances

Gini Importance calculates each feature importance as the
sum over the number of splits (across all tress) that include
the feature, proportional to the number of samples it splits.



5D Sims Estimated Feature Importance vs. Dimension
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