Nonpar MANOVA via Independence Testing
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Introduction: The k-sample testing problem tests whether k groups of data points are sampled Goal: We prove that universally consistent independence Discussion: Empirically evaluating these tests for k-sample-
from the same distribution. Multivariate analysis of variance (Manova) is currently the gold tests achieve universally consistent k-sample testing, and scenarios demonstrates that these nonparametric independence
standard for k-sample testing but makes strong, often inappropriate, parametric assumptions. that k-sample statistics like Energy and Maximum Mean tests typically out-perform Manova, even for Gaussian
Moreover, independence testing and k-sample testing are tightly related. There are many Discrepancy (MMD) are exactly equivalent to Dcorr. We can distributed settings. We thus illustrate the existence of many
nonparametric multivariate independence tests with strong theoretical and empirical properties, extend this framework to perform multilevel and multiway theoretically motivated and empirically per-formant k-sample
including distance correlation (Dcorr) and Hilbert-Schmidt-Independence-Criterion (Hsic). tests. tests.
None Different One Different All Different == KMERF =— MGC == Dcorr == Hsic == Manova > HHG = CCA RV
9 Cluster 1 Multivariate Three-Sample Testing Increasing Sample Size Multivariate Three-Sample Testing Increasing Dimension Multivariate Three-Sample Testing Increasing Angle
% xS x % % E:Eiti;i ] Linear Exponential Cubic Joint Normal Step ] Linear Exponential__ Cubic Joint Normal Step 1 Exponential Cubic Joint Normal Step
1 — Dcorr = N T - o W/ e
. — MGC -1 1 1 :
% e HsiC
= e Mgmovs . Quadratic W-Shaped Spiral Bernoulli Logarithmic | Quadratic W-Shaped ___ Spiral Bernoulli Logarithmic 1 ——2uadratic W-Shapad Spiral__ Eemoull Logaritimic
0 —= o L=z o —_— o / i s
0 1 0 1 0 1 g | L K 3 N - g )/ AR ,/,_- j ;%_\_
. . Cluster SeparaFion | % 013 e e —_——— \T‘:’;ﬁ'_;“,,-,-——w e % 0 | ST=—===a== —’=‘—~=§:*—A— ——————————— < === g 0 ~N~ év = T wg
s 2 -1 2 -1 % =1
2 < Lo L
g e o o . .
’G;J Fourth Root Sine 41 Sine 16T Square 'g ] Fourth Root Sine 41 Sine 161 Square Two Parabolas @ Fourth Root Sine 41 Sine 161 Square Two Parabolas
° 2 350 2 .350 2 .350 @ C_CL) —————————— § "'\
Dimension % ol — :‘g N o }%ﬁi = ‘ é . A
Fig 1: Power versus epsilon and dimension.  ? _ 2 >
The top row shows a scatter plot of each 1 Ellipse Diamond Multiplicative Independence 1 Circle Ellipse Diamond Multiplicative Independence 1 Cirdle Ellipse Diamond Mullplealive e
simulation for a given cluster separation. , L B =
0 —————— -;__“:::z,: = e — 0 Q ﬁ\—\ —— ;éé,—g—,&: e 7., —_— 0 — — =
Nonpar Manova performs as well or better et B a—
than Manova in all settings. 1L o - o o o % 'S - L - L - L o R 0 o ° 0w o % o %
Sample Size Dimension ngle
A | B | C | . : : : . : .
) Default distances ) weak multiway (1)C'uster separation Fig 2-4: Power versus angle, dimension, and sample size for each of 20 three-sample simulations. Curves are plotted relative to Manova: those above 0 outperform
O N Manova and those below 0 perform worse than Manova. Nonpar Manova implementations empirically dominate MANOVA in most settings.
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